International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 4 Number 8 (2015) pp. 430-443 http://www.ijcmas.com



#### **Original Research Article**

# UV-C Irradiation Effect on Seed Germination, Seedling Growth and Productivity of Groundnut (*Arachis hypogaea L.*)

#### R. Neelamegam\* and T. Sutha

P.G. Department of Botany & Research Centre, S.T. Hindu College, Nagercoil -629 002, Tamil Nadu, India \*Corresponding author

#### Keywords Field experiment was carried out by split-plot method to record the effect of UV-C irradiation on seed germination, seedling growth and productivity of groundnut UV-C (Arachis hypogaea L.). The results indicate that UV-C irradiation up to 60min. irradiation, increased the growth parameters of groundnut plant recorded. The UV-C Groundnut. irradiation produces significant increase in seedling vigour and biomass production Arachis as compared to control and other treatments. The results of present study reveals hypogaea, that the UV-C irradiation treatments up to 60 min. has no significant adverse effect Seedling on seed germination, seedling growth and productivity of groundnut plant. growth,

#### A B S T R A C T

#### Introduction

Irradiation is a method that given to substances or plants or plant materials with radiation. During irradiation the high energy radiation pass through the matter and cause ionizing or electric or magnetic disturbances that affect the internal structure or matter of plants. During the past few decades, the ozone reduction problem has stimulated considerable research on higher plant responses to UV-radiation (Caldwell and Flint, 1994). When exposed to elevated UVradiation, the higher plants exhibit various physiological and morphological changes (Bjorn, 1996; Greenberg et al., 1997; Rozema et al., 1997; Caldwell et al., 1998) and there is considerable variation among species (Barnes et al., 1990; Day, 1993; Mc Leod and Newsham, 1997) and among varieties within the same species (Ziska et

water soaked seeds on germination and seedling growth and productivity of groundnut (*Arachis hypogaea* L.) under field condition.

al., 1992; Corlett et al., 1997; Correia et al.,

1998, 1999). Seeds are more susceptible to

radiation when they have high water

content. Presence of oxygen increased the

free radical production (Arvind Kumar and

Purohit, 1998). The role of water content

influencing the effects of physical and

chemical mutagens is well established

(Conger et al., 1968). Water content appears

to involve in facilitate the mobility and

action of free radicals and oxygen with

physical mutagens (Ehrenberg, 1961). The

present study was conducted to observe the

effect of UV-C irradiation treatment on

#### **Materials and Methods**

#### **Preparation of field experimental plots**

Field experiment was conducted for 90 days (from 28/09/2011 to 26/12/2011) in the Botanical Garden, Dept. of Botany, S. T. Hindu College Nagercoil, to evaluate the effect UV-C irradiation on water pre-soaked groundnut seeds germination growth and productivity.. The experimental field with an area of about 10 x  $5 = 50m^2$  was thoroughly cleaned by removing all vegetation and other solid unwanted materials. Then the soil was softened turned down manually and then plots were laid out. The plot size adopted in this experimental design was 150cm length x 100cm breadth x 15cm depth. Between plot 30cm gap was allotted while between rows the gap was 50cm (Fig. 1).

#### **Experimental Design**

Split-Plot Design lay out in the experimental field as follows as shown in the Plate-I.

#### Seed treatment and seed sowing

For field experiment, healthy, dry and uniform size groundnut seeds were presoaked in distilled water for 24 hours and then four sets of seeds were immediately irradiated separately with UV-C at different period of exposure (5, 10, 20, 30 and 60 minutes) in a ST 51 G/W 51UV tube with a wavelength of about 280nm. Dry and water presoaked groundnut seeds not treated with UV-C irradiation were maintained as control. All the treatments were done in 3 replications. Then the seeds of groundnut were sown in the experimental plots (30 seeds/ plot) on 28. 09. 2011. The seed germination and seedling growth of groundnut was observed up to 90 DAS.

#### Irrigation, Weeding and Thinning

From the time of seed sowing the

experimental plots were irrigated regularly once in a day to maintain the soil moisture at saturated level. Weeding was done at regular intervals (once in 15 days) and maintains the plot free from weeds through out the study. Thinning was done after every sampling day that is on 15<sup>th</sup>, 30<sup>th</sup> 60<sup>th</sup> and 90<sup>th</sup> day after seed sowing. The number of seedlings maintained in the experimental plots was calculated at the time of sampling day in each treatment (Table 1).

# Sampling and data collection

Plant sampling was made on 15<sup>th</sup>, 30<sup>th</sup>, 60<sup>th</sup> and 90<sup>th</sup> DAS for recording growth parameters of groundnut seedlings (Plate-I). At the time of every sampling five plants were taken from each plot of all treatments including control. The plants were collected randomly from each plot and the roots are washed with running water to remove the soil particles.

The growth of groundnut seedling were observed through out the study period and the growth parameters like number of seedling survival and seedling growth (total length, shoot length, root length); number of branches; leaf growth - (number of leaf, leaf length and breadth; date of flowering, no. of flowers and pods developed; and biomass production - (seedling/ pod fresh weight and dry weight), etc., were recorded at all sampling days (Plate-I). Besides, Seedling Vigour Index was calculated by using the formula (SVI = % seed germination x Total length) proposed by Abdul-Baki and Anderson (1973); Seedling Tolerance Index was calculated by using the formula (STI =*Mean length of the longest root in treatment/* mean length of the longest root is control x 100) proposed by Turner and Marshal (1972); Root/Shoot Ratio, Leaf Area Index calculated by using the following formula (LAI = length x breadth x 0.69) proposed by Kalra and Dhiman (1977), Absolute Growth

Rate was calculated by using the formula  $(AGR = W_2 \cdot W_1/t_2 \cdot t_1;$  where,  $W_1$  and  $W_2$  refers to weight of total dry matter at the time  $t_2$  and  $t_1$ , respectively) suggested by Redford (1967); Relative Growth Rate was estimated using the formula (RGR = loge  $W_2$ - $Loge W_1/t_2$ - $t_1$ ; where, Loge = 2.3026) proposed by Briggs *et al.* (1920) and Net Assimilation Rate were also calculated by the formula ( $NAR = Loge L_2$ - $Loge L_1/L_2$ - $L_1 \times W_2$ - $W_1/t_2$ - $t_1$ ; where,  $L_2$  and  $L_1$  denote leaf area per plant at the time  $t_2$  and  $t_1$ , respectively) proposed by Gregory (1926).

All the data, collected from experiments, were analysed statistically by calculating mean and standard deviation following standard methods. The significance level was analyzed by using one-way ANOVA computerized software (AGDATA & AGRES) developed by TNAU, Madurai in Tamil Nadu.

#### **Results and Discussion**

UV-C irradiation treatment on groundnut promoted seeds generally the seed germination. The increasing duration of UV-C irradiation (up to 60min) increased the promotery effect on the seed germination of groundnut as compared to dry and soaked seed control (Table Maximum 1). germination of 83.33% was recorded at 60 min UV-C irradiation treatment, while it was low (63.33%) at 5 min UV-C treatment. UV-C irradiation treated groundnut seeds generally increased the seedling (root and shoot) growth at all exposure periods of UV-C irradiation as compared to dry and soaked seed control at all sampling days (Table 2-4; Fig. 1 & 2). The increasing exposure period of UV-C irradiation gradually increased the groundnut seedling (root and shoot) growth. The seedling root and shoot growth of groundnut was more in UV-C irradiated water soaked seeds as compared to dry groundnut seeds (Fig. 1 & 2). When

compared to root growth, the increase of shoot growth was more at all sampling days and the root/shoot ratio of groundnut seedling was decreased with increasing age (Table 2-4; Fig. 3). The total seedlings (root & shoot length) growth of groundnut was general more in seeds treated with UV-C irradiation than controls (Table 2-4; Fig. 4). UV-C irradiation increased the number of branches (Fig. 5) and number of leaves (Fig. 7) in groundnut seedling at all sampling compared to control, while days as decreased the root nodules in 60<sup>th</sup> day samples and increased in 30<sup>th</sup> and 90<sup>th</sup> day samples (Table 2–4; Fig. 6).

UV-C irradiation seed treatment shows no significant effect on leaflet length, leaflet breadth and leaflet area of groundnut seedling as compared to control at all sampling days (Fig. 9 to 11). The total leaf area per plant was increased by UV-C irradiation seed treatment as compared to controls at all sampling days (Fig. 12).

The number of flowers produced per plant was increased at low exposure period of UV-C irradiation (5min) in 30<sup>th</sup> day sample followed by a reduction with further increasing period of exposure as compared to control (Fig. 8), while it was increased up to 20min exposure of UV-C irradiation followed by decrease in 90<sup>th</sup> day sample. In 60<sup>th</sup> day sample, the flower production increased at all treatments (Fig. 8) than the controls.

In 60<sup>th</sup> day sample, the number of pedicels without pod was less in UV-C treatments (Fig. 13), while it was more in 90<sup>th</sup> day samples as compared to controls. UV-C irradiation seed treatment generally increased the mature and immature pods in both sampling days and it was increased with increasing period of UV-C radiation (Fig. 14–16). The dry weight of 100 pods with seeds was maximum (98gm) in 10min and 20 min UV-C exposures (Table 3) as compared to controls and other UV-C treatments. Similarly, UV-C irradiation seed treatment shows maximum dry weight of 100 seeds (41gm) in 10min UV-C exposure than all other treatments including control (Table 3).

Seedling fresh root, shoot and pod biomass of groundnut was generally increased at 30<sup>th</sup> and 90<sup>th</sup> day samples with increasing period of UV-C exposure (Fig. 17–20) as compared controls. But in 60<sup>th</sup> day sample, the biomass production was reduced with increasing UV-C exposure than controls. UV-C irradiation seed treatments increased the root and shoot dry weight of groundnut in 30<sup>th</sup> day samples than controls. But, in 60<sup>th</sup> and 90<sup>th</sup> day samples, the root dry biomass of groundnut seedling was increased initially (5min UV-C irradiation) followed by a reduction with increasing period of UV-C exposure than control (Fig. 21). On the other hand the shoot dry weight of groundnut seedling was increased with increase period of UV-C exposure in 90<sup>th</sup> day sample, while it was decreased in 30<sup>th</sup> day sample than control (Fig. 22). UV-C irradiation seed treatment increased pod dry weight initially followed by reduction in both sampling days as compared to controls (Fig. 23). Similar trend was also noted in the total dry biomass production of groundnut seedling (Fig. 24).

**Table.1** Number of seedlings stand at the time of sampling (DAS)

| Treatment                   | Diat Na | Number of seedling stand on |                      |                      |                      |  |  |  |  |
|-----------------------------|---------|-----------------------------|----------------------|----------------------|----------------------|--|--|--|--|
| I reatment                  | Plot No | $10^{\text{th}}\text{DAS}$  | 30 <sup>th</sup> DAS | 60 <sup>th</sup> DAS | 90 <sup>th</sup> DAS |  |  |  |  |
| $T_1$ –Control- dry seed    | 1       | 26                          | 10                   | 7                    | 4                    |  |  |  |  |
|                             | 2       | 22                          | 10                   | 7                    | 4                    |  |  |  |  |
|                             | 3       | 16                          | 10                   | 7                    | 4                    |  |  |  |  |
| $T_2$ – Soaked Seed (SS)    | 4       | 18                          | 10                   | 7                    | 4                    |  |  |  |  |
|                             | 5       | 23                          | 10                   | 7                    | 4                    |  |  |  |  |
|                             | 6       | 17                          | 10                   | 7                    | 4                    |  |  |  |  |
| $T_3$ –SS+ UV-C '5min'      | 7       | 17                          | 10                   | 7                    | 4                    |  |  |  |  |
|                             | 8       | 22                          | 10                   | 7                    | 4                    |  |  |  |  |
|                             | 9       | 18                          | 10                   | 7                    | 4                    |  |  |  |  |
| $T_4$ –SS+ UV-C '10min'     | 10      | 19                          | 10                   | 7                    | 4                    |  |  |  |  |
|                             | 11      | 18                          | 10                   | 7                    | 4                    |  |  |  |  |
|                             | 12      | 19                          | 10                   | 7                    | 4                    |  |  |  |  |
| $T_5 - SS + UV-C$ '20min'   | 13      | 22                          | 10                   | 7                    | 4                    |  |  |  |  |
|                             | 14      | 20                          | 10                   | 7                    | 4                    |  |  |  |  |
|                             | 15      | 21                          | 10                   | 7                    | 4                    |  |  |  |  |
| $T_6 - SS + UV - C$ '30min' | 16      | 17                          | 10                   | 7                    | 4                    |  |  |  |  |
|                             | 17      | 19                          | 10                   | 7                    | 4                    |  |  |  |  |
|                             | 18      | 26                          | 10                   | 7                    | 4                    |  |  |  |  |
| $T_7 - SS + UV - C$ '60min' | 19      | 25                          | 10                   | 7                    | 4                    |  |  |  |  |
|                             | 20      | 20                          | 10                   | 7                    | 4                    |  |  |  |  |
|                             | 21      | 30                          | 10                   | 7                    | 4                    |  |  |  |  |

| Seedling growth parameters                | Treatments     |                |                |                |                |                | CD                    | F-       |        |
|-------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------------|----------|--------|
|                                           | T <sub>1</sub> | T <sub>2</sub> | T <sub>3</sub> | T <sub>4</sub> | T <sub>5</sub> | T <sub>6</sub> | <b>T</b> <sub>7</sub> | (P=0.05) | value@ |
| 1. Root Length (cm/pl)                    | 9.11           | 9.28           | 9.33           | 9.89           | 10.01          | 10.45          | 10.67                 | 3.39     | NS     |
|                                           | ±0.91          | ±1.44          | ±1.15          | ±1.84          | ±1.33          | ±1.39          | $\pm 2.08$            |          |        |
| 2. Shoot length (cm/pl)                   | 12.67          | 12.84          | 13.11          | 13.22          | 13.45          | 13.55          | 15.67                 | 2.7      | NS     |
|                                           | ±2.17          | ±0.87          | ±2.45          | ±0.75          | ±0.98          | ±0.85          | ±0.33                 |          |        |
| 3. Total length (cm/pl)                   | 21.78          | 22.12          | 22.45          | 23.12          | 23.46          | 23.99          | 26.34                 | 5.03     | NS     |
|                                           | $\pm 3.02$     | $\pm 2.27$     | ±3.59          | ±1.58          | $\pm 3.72$     | $\pm 2.03$     | $\pm 2.33$            |          |        |
| 4. Root/shoot ratio                       | 0.73           | 0.72           | 0.72           | 0.75           | 0.74           | 0.77           | 0.68                  | 0.23     | NS     |
|                                           | $\pm 0.07$     | ±0.06          | ±0.05          | ±0.17          | ±0.23          | $\pm 0.07$     | $\pm 0.12$            |          |        |
| 5. No of branches/pl                      | 4.56           | 4.89           | 4.67           | 5.00           | 4.89           | 5.13           | 5.23                  | 0.98     | NS     |
|                                           | ±0.83          | ±0.39          | ±0.67          | ±0.33          | ±0.39          | ±0.40          | $\pm 0.51$            |          |        |
| 6. No. of root nodules/pl                 | 41.33          | 43.33          | 49.33          | 43.67          | 38.33          | 35.00          | 33.67                 | 14.68    | NS     |
|                                           | ±3.79          | ±8.09          | $\pm 4.04$     | ±6.66          | ±7.77          | $\pm 10.44$    | $\pm 13.01$           |          |        |
| 7. Number of leaves/pl                    | 14.00          | 14.45          | 16.23          | 17.11          | 17.11          | 17.45          | 21.00                 | 7.11     | NS     |
|                                           | ±2.73          | ±4.91          | ±2.59          | ±4.48          | ±5.35          | ±4.54          | ±1.20                 |          |        |
| 8. Leaflet length (cm/leaf)               | 5.29           | 5.49           | 5.58           | 5.58           | 5.41           | 5.15           | 5.05                  | 1.75     | NS     |
|                                           | ±0.33          | ±0.29          | ±.28           | ±0.23          | ±0.33          | ±0.59          | ±0.45                 |          |        |
| 9. Leaflet breadth (cm/leaf)              | 2.85           | 2.87           | 2.91           | 2.81           | 2.69           | 2.64           | 2.54                  | 0.5      | NS     |
|                                           | ±0.10          | ±0.14          | ±0.41          | ±0.12          | ±0.08          | $\pm 0.10$     | $\pm 0.50$            |          |        |
| 10. Leaflet area index                    | 10.41          | 10.81          | 11.15          | 10.81          | 10.05          | 9.37           | 8.82                  | 3.57     | NS     |
|                                           | ±0.94          | $\pm 1.08$     | ±4.43          | ±0.91          | ±0.34          | ±1.25          | ±1.23                 |          |        |
| 11. Leaf area index (cm <sup>2</sup> /pl) | 586.00         | 642.00         | 750.00         | 736.00         | 686.00         | 663.00         | 738.00                | 450.68   | NS     |
|                                           | ±138           | ±282           | ±396           | ±182           | ±204           | ±229           | ±73                   |          |        |
| 12. Seedling vigour index                 | 1316.00        | 1342.00        | 1433.00        | 1521.00        | 1635.00        | 1721.00        | 2171.00               | 438.35   | *      |
|                                           | ±154           | ±251           | ±365           | ±253           | ±199           | ±219           | ±272                  |          |        |
| 13. Seedling tolerance index              | 1.00           | 1.03           | 1.04           | 1.09           | 1.12           | 1.16           | 1.19                  | 0.39     | NS     |
|                                           | ±0.00          | $\pm 0.20$     | ±0.22          | ±0.23          | ±0.45          | ±0.25          | ±0.29                 |          |        |
| 14. Root fresh weight (g/pl)              | 0.84           | 0.87           | 0.87           | 0.89           | 0.93           | 0.95           | 0.99                  | 0.33     | NS     |
|                                           | ±0.20          | $\pm 0.05$     | $\pm 0.28$     | ±0.03          | $\pm 0.32$     | ±0.14          | ±0.31                 |          |        |
| 15. Shoot fresh weight (g/pl)             | 13.49          | 14.81          | 15.29          | 15.33          | 15.57          | 15.84          | 19.02                 | 5.32     | NS     |
|                                           | ±2.51          | ±4.26          | ±1.27          | ±1.83          | ±4.10          | ±1.67          | ±2.39                 |          |        |
| 16. Total fresh weight (g/pl)             | 14.34          | 15.69          | 16.17          | 16.21          | 16.50          | 16.78          | 20.00                 | 5.33     | NS     |
|                                           | ±2.31          | ±4.26          | ±1.03          | ±1.80          | ±4.13          | ±1.60          | $\pm 2.70$            |          |        |
| 17. Root dry weight (g/pl)                | 0.06           | 0.07           | 0.08           | 0.08           | 0.08           | 0.09           | 0.09                  | 0.06     | NS     |
|                                           | ±0.04          | $\pm 0.02$     | ±0.06          | ±0.02          | ±0.01          | $\pm 0.02$     | $\pm 0.02$            |          |        |
| 18. Shoot dry weight (g/pl)               | 1.36           | 1.40           | 1.47           | 1.52           | 1.54           | 1.57           | 1.69                  | 0.52     | NS     |
|                                           | ±0.19          | ±0.17          | ±0.17          | ±0.18          | ±0.40          | ±0.36          | $\pm 0.52$            |          |        |
| 19. Total dry weight (g/pl)               | 1.43           | 1.47           | 1.55           | 1.60           | 1.62           | 1.66           | 1.78                  | 0.52     | NS     |
|                                           | ±0.18          | ±0.15          | ±0.22          | ±0.20          | ±0.41          | ±0.36          | $\pm 0.50$            |          |        |
| 20. No of flowers/pl                      | 8.67           | 9.33           | 10.00          | 8.67           | 8.67           | 8.00           | 7.00                  | 5.22     | NS     |
|                                           | ±3.79          | $\pm 2.08$     | ±4.58          | ±0.58          | ±4.04          | ±4.36          | ±2.64                 |          |        |
| 21. Seed germination (%)#                 | 54.44          | 61.11          | 63.33          | 65.55          | 69.99          | 72.22          | 83.33                 | 20.42    | NS     |
|                                           | $\pm 18.36$    | ±13.88         | $\pm 8.82$     | ±6.94          | ±3.34          | $\pm 12.61$    | ±16.67                |          |        |

# Table.2 Effect of UV-C irradiation seed treatment on seedling growth (30 DAS) of groundnut

<sup>#</sup>Seed germination was calculated on 10<sup>th</sup> day after sowing; Values are mean of three replications; ± -Standard Deviation @ -One way ANOVA \*-Significance at 5% level NS –Non-significance

| T <sub>1</sub> T <sub>3</sub> T <sub>4</sub> T <sub>5</sub> T <sub>6</sub> T <sub>7</sub> (P=0.05) value           1. Root Length (cm/pl)         14.50         14.89         15.00         15.00         15.01         15.51         17.95         3.79         NS           2. Shool length (cm/pl)         38.34         40.78         40.84         41.00         41.78         43.34         44.89         81.00         NS           3. Total length (cm/pl)         52.84         55.67         55.84         56.01         57.12         58.84         62.24         8.83         NS           4. Root/shoot ratio         0.38         0.37         0.37         0.37         0.37         0.36         0.41         0.12         NS           5. No of branches/pl         4.22         4.66         4.67         4.85         4.94         4.89         5.78         1.57         NS           6. No of root nodules/pl         40.67         40.99         37.89         38.22         45.34         50.01         57.45         18.90         NS           6. No of oot nodules/pl         54.11         63.12         67.34         69.11         71.33         71.66         6.57         NS           1.10         2.02 </th <th>Saadling growth nanomatons</th> <th></th> <th></th> <th>Т</th> <th>reatmen</th> <th>ts</th> <th></th> <th></th> <th>CD</th> <th>F-</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Saadling growth nanomatons                                    |                |                | Т              | reatmen        | ts             |                |             | CD       | F-     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------|----------|--------|
| 1. Root Length (cm/pl)       14.50       14.89       15.00       15.00       15.01       17.95       3.79       NS         2. Shoot length (cm/pl)       38.34       40.78       40.84       41.00       41.78       43.34       44.89       8.10       NS         3. Total length (cm/pl)       52.84       55.67       55.84       66.01       57.12       58.84       62.01       44.89       8.03       NS         4. Root/shoot ratio       0.38       0.38       0.37       0.37       0.36       0.41       0.12       NS         5. No of branches/pl       4.22       4.56       4.67       4.85       4.94       4.89       5.78       1.57       NS         6. No. of root nodules/pl       40.67       40.99       37.89       38.22       45.44       51.17.45       18.90       NS         7. Number of leaves/pl       54.11       63.12       67.34       69.11       71.33       72.34       90.56       6.57       NS         10.18       ±10.18       ±1.04       ±7.02       ±1.02       ±0.22       4.022       4.022       4.022       4.022       4.022       4.022       4.022       4.022       4.022       4.022       4.022       4.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Seeding growth parameters                                     | T <sub>1</sub> | T <sub>2</sub> | T <sub>3</sub> | T <sub>4</sub> | T <sub>5</sub> | T <sub>6</sub> | $T_7$       | (P=0.05) | value@ |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1. Root Length (cm/pl)                                        | 14.50          | 14.89          | 15.00          | 15.00          | 15.34          | 15.51          | 17.95       | 3.79     | NS     |
| 2. Shoot length (cm/pl)       38.34       40.78       40.84       41.00       41.78       43.34       44.89       8.10       NS         3. Total length (cm/pl)       52.84       55.7       55.84       65.01       57.12       85.84       62.84       85.83       NS         4. Root/shoot ratio       0.38       0.37       0.37       0.36       0.41       0.12       NS         5. No of branches/pl       4.22       4.56       4.67       4.88       4.94       4.89       5.78       1.57       NS         6. No. of root nodules/pl       40.67       40.99       37.89       38.22       45.34       50.11       57.45       18.90       NS         7. Number of leaves/pl       45.11       6.46       6.12       6.31       6.54       6.65       6.61       6.19       0.43       NS $\pm 1.07$ $\pm 0.25$ $\pm 0.27$ $\pm 0.20$ $\pm 0.16$ $\pm 0.27$ $\pm 0.20$ $\pm 0.26$ $\pm 0.27$ $\pm 0.29$ $= 0.24$ $\pm 0.22$ $= 0.24$ $\pm 0.22$ $= 0.29$ $= 0.24$ $\pm 0.22$ $= 0.24$ $= 0.22$ $= 0.27$ $= 0.21$ $= 0.27$ $= 0.21$ $= 0.29$ $= 0.29$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               | ±0.60          | ±1.35          | ±1.32          | ±2.33          | ±1.30          | ±2.02          | ±3.52       |          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2. Shoot length (cm/pl)                                       | 38.34          | 40.78          | 40.84          | 41.00          | 41.78          | 43.34          | 44.89       | 8.10     | NS     |
| 3. Total length (cm/pl) $52.84$ $55.67$ $55.84$ $56.01$ $57.12$ $58.84$ $62.84$ $8.83$ NS $\pm 5.96$ $\pm 7.91$ $\pm 7.22$ $\pm 6.33$ $\pm 3.81$ $\pm 6.20$ $\pm 7.04$ $\pm$                                                                                                                                                                                                                                                         |                                                               | ±5.42          | ±9.06          | ±6.05          | ±5.03          | ±3.59          | ±5.45          | ±6.36       |          |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3. Total length (cm/pl)                                       | 52.84          | 55.67          | 55.84          | 56.01          | 57.12          | 58.84          | 62.84       | 8.83     | NS     |
| 4. Root/shoot ratio       0.38       0.37       0.37       0.37       0.36       0.41       0.12       NS         5. No of branches/pl       4.22       4.64       4.07       4.88       4.94       4.89       5.78       1.57       NS         6. No. of root nodules/pl       40.67       40.99       37.89       38.22       45.34       50.11       57.45       11.67       NS         6. No. of root nodules/pl       46.43       46.73       47.40       49.09       54.64       17.72       11.67       NS         7. Number of leaves/pl       54.11       63.12       67.34       69.11       71.33       72.34       90.56       6.57       NS         8. Leaflet length (cm/leaflet)       5.16       6.55       6.54       6.65       6.61       6.99       6.57       NS         9. Leaflet breadth (cm/leaflet)       3.16       3.09       3.26       3.20       3.09       3.09       3.04       0.49       NS         11. Leaf area index (cm <sup>2</sup> /pl)       265.90       288.00       368.00       401.00       421.00       421.04       41.13       13.04       2.39       NS         12. Seedling vigour index       1360       3.340.00       368.00       308.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               | ±5.96          | ±7.91          | ±7.22          | ±6.33          | ±3.51          | ±6.20          | ±7.04       |          |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4. Root/shoot ratio                                           | 0.38           | 0.38           | 0.37           | 0.37           | 0.37           | 0.36           | 0.41        | 0.12     | NS     |
| 5. No of branches/pl       4.22       4.56       4.67       4.85       4.94       4.89       5.78       1.57       NS         6. No. of root nodules/pl       40.67       40.99       37.89       38.22       45.34       50.11       57.45       18.90       NS         5. Number of leaves/pl       54.11       65.12       67.34       69.11       71.33       72.34       90.56       6.57       NS         8. Leaflet length (cm/leaflet)       6.46       6.50       6.51       6.54       6.65       6.61       6.19       0.43       NS $\pm 0.25$ $\pm 0.27$ $\pm 0.20$ $\pm 0.16$ $\pm 0.24$ $\pm 0.22$ $\pm 0.27$ $\pm 0.18$ $\pm 0.13$ $\pm 0.05$ $0.49$ NS $\pm 0.65$ $\pm 0.27$ $\pm 0.18$ $\pm 0.06$ $\pm 1.14$ $\pm 1.33$ $\pm 4.66$ $14.43$ $14.04$ $13.40$ $2.39$ NS         10. Leaflet Area Index       12.02 $13.87$ $14.66$ $14.43$ $14.03$ $13.04$ $2.39$ NS         11. Leaf area index (cm <sup>2</sup> /pl)       2659.00       289.00       356.00       401.00       428.10       921.14 $= 1.03$ $= 1.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               | ±0.04          | ±0.12          | ±0.03          | ±0.05          | ±0.05          | ±0.05          | ±0.09       |          |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5. No of branches/pl                                          | 4.22           | 4.56           | 4.67           | 4.85           | 4.94           | 4.89           | 5.78        | 1.57     | NS     |
| 6. No. of root nodules/pl       40.67       40.99       37.89       38.22       45.34       50.11       57.45       18.90       NS $\pm 6.43$ $\pm 6.73$ $\pm 7.40$ $\pm 9.09$ $\pm 5.46$ $\pm 17.29$ $\pm 11.67$ 7. Number of leaves/pl $\pm 5.11$ $\pm 43.66$ $\pm 18.41$ $\pm 7.13$ $\pm 15.64$ $\pm 21.73$ 8. Leaflet length (cm/leaflet) $6.46$ $6.50$ $6.51$ $6.54$ $6.66$ $6.61$ $\pm 0.27$ $\pm 10.18$ $\pm 0.09$ $\pm 0.14$ $\pm 0.03$ $0.49$ NS $\pm 0.65$ $\pm 0.27$ $\pm 1.08$ $\pm 0.06$ $\pm 1.14$ $\pm 1.13$ $\pm 3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ $3.0.0$ </td <td>•</td> <td>±1.07</td> <td><math>\pm 0.84</math></td> <td>±0.89</td> <td>±1.03</td> <td>±1.10</td> <td>±0.39</td> <td>±1.02</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                             | ±1.07          | $\pm 0.84$     | ±0.89          | ±1.03          | ±1.10          | ±0.39          | ±1.02       |          |        |
| $\pm 6.43$ $\pm 6.73$ $\pm 7.40$ $\pm 9.09$ $\pm 5.46$ $\pm 17.29$ $\pm 11.67$ (b)7. Number of leaves/pl $54.11$ $63.12$ $67.34$ $69.11$ $71.33$ $72.34$ $90.56$ $6.57$ $8.$ 8. Leaflet length (cm/leaflet) $6.46$ $6.50$ $6.51$ $6.54$ $6.66$ $6.61$ $6.19$ $0.43$ NS $\pm 0.25$ $\pm 0.27$ $\pm 0.02$ $\pm 0.16$ $\pm 0.24$ $\pm 0.22$ $\pm 0.29$ $\pm 0.24$ $\pm 0.22$ $\pm 0.29$ $\pm 0.14$ 9. Leaflet hreadth (cm/leaflet) $3.16$ $3.09$ $3.26$ $3.20$ $3.09$ $3.09$ $3.05$ $0.49$ NS $\pm 2.05$ $\pm 0.27$ $\pm 0.18$ $\pm 0.09$ $\pm 11.4$ $\pm 10.3$ $\pm 0.09$ $\pm 0.14$ $\pm 0.13$ $\pm 0.09$ NS $\pm 2.35$ $\pm 0.95$ $\pm 1.08$ $\pm 16.66$ $\pm 11.4$ $\pm 1.03$ $\pm 0.07$ $\pm 1.08$ $\pm 1.03$ $\pm 1.03$ $\pm 1.08$ $\pm 1.08$ 11. Leaf area index (cm <sup>2</sup> /pl) $2659.00$ $2859.00$ $586.00$ $610.10$ $473.00$ $99.0.41$ *12. Seedling vigour index $318.60$ $350.00$ $358.00$ $410.00$ $4281.00$ $521.100$ $99.0.41$ *13. Seedling tolerance index $1.00$ $1.03$ $1.03$ $1.06$ $1.07$ $1.25$ $0.27$ NS $\pm 1.04$ $\pm 1.64$ $\pm 1.54$ $\pm 1.64$ </td <td>6. No. of root nodules/pl</td> <td>40.67</td> <td>40.99</td> <td>37.89</td> <td>38.22</td> <td>45.34</td> <td>50.11</td> <td>57.45</td> <td>18.90</td> <td>NS</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6. No. of root nodules/pl                                     | 40.67          | 40.99          | 37.89          | 38.22          | 45.34          | 50.11          | 57.45       | 18.90    | NS     |
| 7. Number of leaves/pl       54.11       63.12       67.34       69.11       71.33       72.34       90.56       6.57       NS         8. Leaflet length (cm/leaflet)       6.46       6.50       6.51       6.54       40.22 $\pm 0.20$ $\pm 11.64$ $\pm 71.33$ $\pm 15.64$ $\pm 21.73$ 9. Leaflet breadth (cm/leaflet)       3.16       3.09       3.26       3.20       3.09       3.05       0.49       NS $\pm 0.65$ $\pm 0.27$ $\pm 0.18$ $\pm 0.09$ $\pm 0.14$ $\pm 0.13$ $\pm 0.09$ $\pm 0.01$ $\pm 0.03$ $\pm 0.09$ $\pm 0.14$ $\pm 0.03$ $\pm 0.09$ $\pm 0.14$ $\pm 0.03$ $\pm 0.09$ $\pm 0.14$ $\pm 0.03$ $\pm 0.09$ $\pm 1.14$ $\pm 1.03$ $\pm 0.09$ $\pm 1.04$ $\pm 1.03$ $\pm 0.09$ $\pm 1.14$ $\pm 1.03$ $\pm 0.09$ $\pm 1.14$ $\pm 1.03$ $\pm 0.09$ $\pm 1.14$ $\pm 1.03$ $\pm 1.04$ $\pm 1.34$ $\pm 1.03$ $\pm 1.04$ $\pm 1.34$ $\pm 1.03$ $\pm 1.34$ $\pm 1.03$ $\pm 1.34$ </td <td>r</td> <td>±6.43</td> <td>±6.73</td> <td><math>\pm 7.40</math></td> <td>±9.09</td> <td>±5.46</td> <td>±17.29</td> <td><math>\pm 11.67</math></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r                                                             | ±6.43          | ±6.73          | $\pm 7.40$     | ±9.09          | ±5.46          | ±17.29         | $\pm 11.67$ |          |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7. Number of leaves/pl                                        | 54.11          | 63.12          | 67.34          | 69.11          | 71.33          | 72.34          | 90.56       | 6.57     | NS     |
| 8. Leaflet length (cm/leaflet)       6.46       6.50       6.51       6.54       6.65       6.61       6.19       0.43       NS         9. Leaflet breadth (cm/leaflet)       3.16       3.09       3.26       3.20       3.09       3.09       3.05       0.49       NS $\pm 0.055$ $\pm 0.055$ $\pm 0.16$ $\pm 0.22$ $\pm 0.22$ $\pm 0.29$ NS $\pm 0.055$ $\pm 0.18$ $\pm 0.09$ $\pm 0.14$ $\pm 1.04$ $\pm 1.05$ $\pm 1.06$ $\pm 1.04$ $\pm 1.04$ $\pm 0.06$ $\pm 0.11$ $\pm 0.06$ $\pm 0.11$ $\pm 0.06$ $\pm 0.13$ $\pm 0.29$ $\pm 0.16$ $\pm 0.103$ <t< td=""><td></td><td>±10.18</td><td>±15.31</td><td>+4.36</td><td>±18.41</td><td>+7.13</td><td>±15.64</td><td>+21.73</td><td></td><td>1.00</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               | ±10.18         | ±15.31         | +4.36          | ±18.41         | +7.13          | ±15.64         | +21.73      |          | 1.00   |
| $\begin{array}{c} 10.1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 Leaflet length (cm/leaflet)                                 | 6 46           | 6 50           | 6 51           | 6 54           | 6 65           | 6.61           | 6 19        | 0.43     | NS     |
| 9. Leaflet breadth (cm/leaflet)       3.16       3.02       3.26       3.20       3.09       3.05       0.49       NS         10. Leaflet Area Index       12.02       13.87       14.66       14.43       14.24       14.13       13.04       2.39       NS         11. Leaflet Area Index       12.02       13.87       14.66       14.43       14.24       14.13       13.04       2.39       NS         11. Leaf area index (cm²/pl)       2655.00       2889.00       3566.00       4021.00       4084.00       4113.00       4723.00       1951.08       NS         ±981       ±1446       ±738       ±1249       ±738       ±1063       ±1234       143.00       4723.00       1951.08       NS         ±0.01       1.03       1.03       1.06       1.07       1.25       0.27       NS         ±171       ±405       ±361       ±667       ±384       ±1060       ±0.13       ±0.29       14.10       1.15       ±1.64       ±3.64       ±0.94       ±0.13       ±0.64       ±1.83       ±1.64       ±1.83       ±1.64       ±1.83       ±1.64       ±1.83       ±1.64       ±1.83       ±1.64       ±1.83       ±2.22       2.56±       ±1.83       ±1.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               | +0.25          | +0.27          | +0.20          | +0.16          | +0.24          | +0.22          | +0.29       | 0110     | 110    |
| $\begin{array}{c} 1.1 \text{ brind brind (normality)} \\ (10.1  brind brin$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 Leaflet breadth (cm/leaflet)                                | 3 16           | 3.09           | 3.26           | 3 20           | 3.09           | 3.09           | 3.05        | 0.49     | NS     |
| 10. Leaflet Area Index       12.02       13.87       14.66       14.43       14.43       14.43       14.43       14.44       14.13       13.04       2.39       NS         11. Leaflet Area Index       (cm²/pl)       2659.00       2889.00       3566.00       4021.00       4084.00       4113.00       4723.00       1951.08       NS $\pm 981$ $\pm 1446$ $\pm 738$ $\pm 1249$ $\pm 738$ $\pm 1063$ $\pm 1234$ $\pm 0.00$ 421.00       4084.00       4113.00       4723.00       1951.08       NS $\pm 171$ $\pm 4465$ $\pm 361$ $\pm 667$ $\pm 384$ $\pm 1078$ $\pm 1060$ $\pm 113$ $\pm 0.00$ $\pm 0.11$ $\pm 0.06$ $\pm 0.14$ $\pm 0.16$ $\pm 0.18$ $\pm 1.63$ $\pm 1.23$ $\pm 0.53$ $\pm 0.55$ <td>2. Leanet breadth (chi/leanet)</td> <td>+0.65</td> <td>+0.27</td> <td>+0.18</td> <td>+0.00</td> <td>+0.14</td> <td>+0.13</td> <td>+0.00</td> <td>0.42</td> <td>115</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2. Leanet breadth (chi/leanet)                                | +0.65          | +0.27          | +0.18          | +0.00          | +0.14          | +0.13          | +0.00       | 0.42     | 115    |
| 12.05       10.36       14.36       14.45       14.15       10.46       2.05       10.86       14.16       11.10       2.05       10.97       11.14       11.10       10.97       10.97         11. Leaf area index (cm <sup>2</sup> /pl)       2659.00       2889.00       3566.00       4021.00       4084.00       4113.00       4723.00       1951.08       NS         12. Seedling vigour index       3186.00       3340.00       3508.00       3685.00       4010.00       4281.00       5211.00       990.41       ***         13. Seedling tolerance index       1.00       1.03       1.03       1.06       1.07       1.25       0.27       NS         ±0.00       ±0.11       ±0.06       ±0.14       ±0.06       ±0.13       ±0.29       1.14       11       5.11       1.93       NS         ±1.8       ±0.00       ±0.11       ±0.06       ±0.14       ±0.06       ±0.13       ±0.29       1.83       ±1.83       ±1.83       1.23       NS       ±1.83       ±0.29       1.83       ±1.83       ±1.83       ±1.83       ±1.83       ±1.83       ±1.83       ±1.83       ±1.83       ±1.83       ±1.83       ±1.83       ±1.83       ±1.83       ±1.83       ±1.83       ±1.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 Leaflet Area Index                                         | 12.02          | 13.97          | 14.66          | 14.43          | 14.24          | 14.13          | 13.04       | 2 30     | NS     |
| 11. Leaf area index (cm <sup>2</sup> /pl)       2659.00       288.000       356.000       4021.00       4084.00       4113.00       4723.00       1951.08       NS         12. Seedling vigour index       3186.00       3340.00       3508.00       3685.00       4010.00       4281.00       5211.00       990.41       ***         13. Seedling tolerance index       1.00       1.03       1.03       1.03       1.06       ±0.17       ±.25       0.27       NS         40.00       ±0.11       ±0.06       ±0.14       ±0.06       ±0.13       ±0.29       1.25       0.27       NS         41.No of flowers/pl       3.34       3.56       3.76       3.89       4.11       4.11       5.11       1.93       NS         ±0.08       ±1.64       ±1.35       ±0.69       ±0.19       ±0.83       ±1.83       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03       1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | io. Ecanet Area mucx                                          | +2.35          | +0.05          | +1.00          | +0.60          | +1 14          | +1.03          | +0.07       | 2.39     | 115    |
| 11. Each area index (cm /pi)       2435.00       2435.00       3235.00       340.100       4036.00       410.00       4281.00       521.00       990.41       ***         12. Seedling vigour index       3186.00       3340.00       3508.00       3685.00       4010.00       4281.00       5211.00       990.41       ***         13. Seedling tolerance index       1.00       1.03       1.03       1.03       1.06       ±0.13       ±0.29          14. No of flowers/pl       3.34       3.56       3.76       3.89       4.11       4.11       5.11       1.93       NS         ±0.08       ±1.64       ±1.35       ±0.69       ±0.19       ±0.83       ±1.83           15. No of immature pods/pl       9.34       12.01       12.12       10.67       8.56       7.89       7.45       6.23       NS         ±4.63       ±6.53       ±2.99       ±2.83       ±5.48       ±3.33       ±7.08          16. No. mature pods/pl       16.12       16.45       16.89       17.56       17.67       18.33       21.56       9.53       NS         ±4.53       ±6.54       ±2.91       22.35       26.45       26.23       25.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11. Let $\mathbf{f}$ and $\mathbf{f}$ index $(2\pi)^2/(2\pi)$ | 2650.00        | 2880.00        | ±1.00          | ±0.09          | ±1.14          | ±1.03          | ±0.97       | 1051.09  | NS     |
| 12. Seedling vigour index3186.003340.003588.004010.004281.005211.00990.41***12. Seedling vigour index1.001.031.031.031.061.071.250.27NS±0.00±0.11±0.06±0.14±0.06±0.13±0.29***14. No of flowers/pl3.343.563.763.894.114.115.111.93NS±0.00±0.11±0.06±0.13±0.29***************14. No of flowers/pl3.343.563.763.894.114.115.111.93NS±0.08±1.05±1.06±0.13±0.29±1.83±1.83******15. No of immature pods/pl9.3412.0112.1210.678.567.897.456.23NS±3.60±1.15±4.67±4.98±1.83±2.222.50±******16. No. mature pods/pl16.1216.4516.8917.5617.6718.3321.569.53NS±4.53±6.53±2.99±2.83±5.48±3.53±7.08*********17. Total No. of pods/pl25.4628.4629.0129.3526.4526.2325.678.89NS±3.07±2.83±1.19±3.36±3.61±3.02±2.88*************************************** <td>11. Leaf area index (cm /pl)</td> <td>±091</td> <td>±1446</td> <td>±729</td> <td>4021.00</td> <td>4084.00</td> <td>4115.00</td> <td>4/23.00</td> <td>1951.08</td> <td>INB</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11. Leaf area index (cm /pl)                                  | ±091           | ±1446          | ±729           | 4021.00        | 4084.00        | 4115.00        | 4/23.00     | 1951.08  | INB    |
| 12. Seeding vigour index       3130.00       350.00       530.00       530.00       500.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00       4201.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12 Soodling vigoun inder                                      | ±901           | ±1440          | 2509.00        | ±1249          | ±/38           | ±1003          | ±1234       | 000 41   | **     |
| 13. Seedling tolerance index       1.00       1.03       1.03       1.03       1.03       1.06       1.07       1.25       0.27       NS         14. No of flowers/pl       3.34       3.56       3.76       3.89       4.11       4.11       5.11       1.93       NS         14. No of flowers/pl       3.34       3.56       3.76       3.89       4.11       4.11       5.11       1.93       NS         15. No of immature pods/pl       9.34       12.01       12.12       10.67       8.56       7.89       7.45       6.23       NS         16. No. mature pods/pl       16.12       16.45       16.89       17.56       17.67       18.33       21.56       9.53       NS         17. Total No. of pods/pl       25.46       28.46       29.01       29.35       26.45       26.23       25.67       8.89       NS         18. No. of pedicels without       10.89       12.78       12.11       7.23       5.84       5.78       7.27       NS         19. Root fresh weight (g/pl)       2.08       2.17       2.54       2.28       2.18       2.10       2.04       0.67       NS         20. Shoot fresh weight (g/pl)       115.78       122.11       123.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12. Seeding vigour index                                      | 5180.00        | 3340.00        | 3508.00        | 3085.00        | 4010.00        | 4281.00        | 5211.00     | 990.41   | ~~     |
| 13. Seeding tolerance index       1.00       1.03       1.03       1.03       1.04       1.06       1.07       1.25       0.27       N is the image of the i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               | ±1/1           | ±405           | ±361           | ±00/           | ±384           | ±10/8          | ±1060       | 0.25     | NG     |
| $\pm 0.00$ $\pm 0.11$ $\pm 0.06$ $\pm 0.14$ $\pm 0.06$ $\pm 0.13$ $\pm 0.29$ 14. No of flowers/pl3.343.563.763.894.114.115.111.93NS $\pm 0.88$ $\pm 1.64$ $\pm 1.35$ $\pm 0.67$ 8.567.897.456.23NS $\pm 0.83$ $\pm 1.64$ $\pm 1.212$ 10.678.567.897.456.23NS $\pm 3.60$ $\pm 1.15$ $\pm 4.67$ $\pm 4.98$ $\pm 1.83$ $\pm 2.22$ 2.50 $\pm$ 16.1216. No. mature pods/pl16.1216.4516.8917.5617.6718.3321.569.53NS $\pm 4.53$ $\pm 6.53$ $\pm 2.99$ $\pm 2.83$ $\pm 5.48$ $\pm 3.53$ $\pm 7.08$ 16.1216.4516.8917.5617.6718.3321.569.53NS $\pm 1.7$ total No. of pods/pl25.4628.4629.0129.3526.4526.2325.678.89NS $\pm 3.329$ $\pm 7.60$ $\pm 7.31$ $\pm 2.32$ $\pm 2.03$ $\pm 5.78$ 5.787.27NS $\pm 3.07$ $\pm 2.83$ $\pm 1.19$ $\pm 3.66$ $\pm 3.61$ $\pm 3.02$ $\pm 2.88$ 16.8910.67NS $\pm 3.07$ $\pm 2.83$ $\pm 1.19$ $\pm 3.65$ $\pm 0.65$ $\pm 0.06$ $\pm 0.45$ 16.1416.1218. No. of pedicels without10.8912.7812.117.235.845.785.787.27NS $\pm 3.07$ $\pm 2.69$ $\pm 1.78$ $\pm 1.64$ $\pm 0.52$ $\pm 0.55$ $\pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13. Seedling tolerance index                                  | 1.00           | 1.03           | 1.03           | 1.03           | 1.06           | 1.07           | 1.25        | 0.27     | NS     |
| 14. No of Howers/p1       3.34       3.56       3.76       3.89       4.11       4.11       5.11       1.93       NS $\pm 0.88$ $\pm 1.64$ $\pm 1.35$ $\pm 0.69$ $\pm 0.19$ $\pm 0.83$ $\pm 1.83$ 15. No of immature pods/p1       9.34       12.01       12.12       10.67       8.56       7.89       7.45       6.23       NS         16. No. mature pods/p1       16.45       16.89       17.56       17.67       18.33       21.56       9.53       NS $\pm 4.53$ $\pm 6.53$ $\pm 2.99$ $\pm 2.83$ $\pm 5.48$ $\pm 3.53$ $\pm 7.60$ $\pm 7.31$ $\pm 2.32$ $\pm 2.03$ $\pm 5.75$ $\pm 2.64$ 17. Total No. of pods/p1       25.46       28.46       29.01       29.35       26.45       26.23       25.67       8.89       NS $\pm 33.29$ $\pm 7.60$ $\pm 7.31$ $\pm 2.32$ $\pm 2.03$ $\pm 5.78$ $5.78$ $7.27$ NS $\pm 3.07$ $\pm 2.83$ $\pm 1.19$ $\pm 3.36$ $\pm 3.61$ $\pm 3.02$ $\pm 2.88$ 10 $0.67$ NS $\pm 0.653$ $\pm 0.55$ $\pm 0.66$ $\pm 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               | ±0.00          | ±0.11          | ±0.06          | ±0.14          | ±0.06          | ±0.13          | ±0.29       | 1.02     |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14. No of flowers/pl                                          | 3.34           | 3.56           | 3.76           | 3.89           | 4.11           | 4.11           | 5.11        | 1.93     | NS     |
| 15. No of immature pods/pl       9.34       12.01       12.12       10.67       8.56       7.89       7.45       6.23       N8 $\pm 3.60$ $\pm 1.15$ $\pm 4.67$ $\pm 4.98$ $\pm 1.83$ $\pm 2.22$ 2.50 $\pm$ 16.00         16. No. mature pods/pl       16.12       16.45       16.89       17.56       17.67       18.33       21.56       9.53       N8         17. Total No. of pods/pl       25.46       28.46       29.01       29.35       26.45       26.23       25.67       8.89       N8         18. No. of pedicels without       10.89       12.78       12.11       7.23       5.84       5.78       5.78       7.27       N8         ±3.07 $\pm 2.83$ $\pm 1.19$ $\pm 3.36$ $\pm 3.61$ $\pm 3.02$ $\pm 2.88$ 19       Root fresh weight (g/pl)       2.08       2.17       2.54       2.28       2.10       2.04       0.67       N8 $\pm 0.53$ $\pm 0.01$ $\pm 0.34$ $\pm 0.28$ $\pm 0.55$ $\pm 0.06$ $\pm 0.45$ 103.00       51.30       N8         19. Root fresh weight (g/pl)       115.78       122.11       123.78       108.89       106.89       103.89       103.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               | ±0.88          | ±1.64          | ±1.35          | ±0.69          | ±0.19          | ±0.83          | ±1.83       |          |        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15. No of immature pods/pl                                    | 9.34           | 12.01          | 12.12          | 10.67          | 8.56           | 7.89           | 7.45        | 6.23     | NS     |
| 16. No. mature pods/pl       16.12       16.45       16.89       17.56       17.67       18.33       21.56       9.53       N8 $\pm 4.53$ $\pm 6.53$ $\pm 2.99$ $\pm 2.83$ $\pm 5.48$ $\pm 3.53$ $\pm 7.08$ 17.56       17.67       18.33       21.56       9.53       N8         17. Total No. of pods/pl       25.46       28.46       29.01       29.35       26.45       26.23       25.67       8.89       N8 $\pm 33.29$ $\pm 7.60$ $\pm 7.31$ $\pm 2.32$ $\pm 2.03$ $\pm 5.75$ $\pm 2.64$ 18       No. of pedicels without       10.89       12.78       12.11       7.23       5.84       5.78       5.78       7.27       N8         19. Root fresh weight (g/pl)       2.08       2.17       2.54       2.28       2.18       2.10       2.04       0.67       N8 $\pm 0.53$ $\pm 0.01$ $\pm 0.34$ $\pm 0.28$ $\pm 0.55$ $\pm 0.06$ $\pm 0.45$ $\pm 1.65$ $\pm 31.87$ $\pm 50.16$ $\pm 17.35$ $\pm 2.89$ 13.00 $51.30$ N8         20. Shoot fresh weight (g/pl)       0.80       0.89       1.03       0.92       0.91       0.80       0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               | ±3.60          | ±1.15          | ±4.67          | ±4.98          | ±1.83          | ±2.22          | 2.50±       |          |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16. No. mature pods/pl                                        | 16.12          | 16.45          | 16.89          | 17.56          | 17.67          | 18.33          | 21.56       | 9.53     | NS     |
| 17. Total No. of pods/pl       25.46       28.46       29.01       29.35       26.45       26.23       25.67       8.89       NS $\pm 33.29$ $\pm 7.60$ $\pm 7.31$ $\pm 2.32$ $\pm 2.03$ $\pm 5.75$ $\pm 2.64$ 10.89       12.78       12.11       7.23       5.84       5.78       7.27       NS $\pm 3.07$ $\pm 2.83$ $\pm 1.19$ $\pm 3.36$ $\pm 3.61$ $\pm 3.02$ $\pm 2.88$ 11.9 $\pm 3.36$ $\pm 3.02$ $\pm 2.88$ 12.04       0.67       NS $\pm 0.53$ $\pm 0.01$ $\pm 0.34$ $\pm 0.28$ $\pm 1.19$ $\pm 3.36$ $\pm 3.00$ $\pm 2.88$ 10.64 $\pm 0.455$ $\pm 0.06$ $\pm 0.455$ $\pm 1.30$ $\pm 2.07$ $\pm 1.30$ $\pm 2.47$ $\pm 2.455$ $\pm 2.47$ $\pm 2.47$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               | ±4.53          | $\pm 6.53$     | ±2.99          | ±2.83          | ±5.48          | $\pm 3.53$     | $\pm 7.08$  |          |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17. Total No. of pods/pl                                      | 25.46          | 28.46          | 29.01          | 29.35          | 26.45          | 26.23          | 25.67       | 8.89     | NS     |
| 18. No. of pedicels without       10.89       12.78       12.11       7.23       5.84       5.78       7.27       NS $\pm 3.07$ $\pm 2.83$ $\pm 1.19$ $\pm 3.36$ $\pm 3.61$ $\pm 3.02$ $\pm 2.88$ 19.         19. Root fresh weight (g/pl)       2.08       2.17       2.54       2.28       2.18       2.10       2.04       0.67       NS $\pm 0.53$ $\pm 0.01$ $\pm 0.34$ $\pm 0.28$ $\pm 0.55$ $\pm 0.06$ $\pm 0.45$ 103.00       51.30       NS $\pm 0.53$ $\pm 0.01$ $\pm 0.34$ $\pm 0.28$ $\pm 0.55$ $\pm 0.06$ $\pm 0.45$ 103.00       51.30       NS $\pm 35.69$ $\pm 15.28$ $\pm 11.65$ $\pm 31.87$ $\pm 50.16$ $\pm 17.35$ $\pm 7.55$ 121. Root dry weight (g/pl)       0.80       0.89       1.03       0.92       0.91       0.80       0.44       NS $\pm 0.21$ $\pm 0.31$ $\pm 0.12$ $\pm 0.16$ $\pm 0.53$ $\pm 0.19$ $\pm 0.36$ 122.       NS $\pm 2.47$ $\pm 2.85$ $\pm 13.34$ $\pm 16.39$ $\pm 19.71$ $\pm 9.77$ $\pm 10.21$ 123.       124.       13.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               | $\pm 33.29$    | ±7.60          | ±7.31          | $\pm 2.32$     | $\pm 2.03$     | ±5.75          | $\pm 2.64$  |          |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18. No. of pedicels without                                   | 10.89          | 12.78          | 12.11          | 7.23           | 5.84           | 5.78           | 5.78        | 7.27     | NS     |
| 19. Root fresh weight (g/pl)       2.08       2.17       2.54       2.28       2.18       2.10       2.04       0.67       NS $\pm 0.53$ $\pm 0.01$ $\pm 0.34$ $\pm 0.28$ $\pm 0.55$ $\pm 0.06$ $\pm 0.45$ 10         20. Shoot fresh weight (g/pl)       115.78       122.11       123.78       108.89       106.89       103.89       103.00       51.30       NS $\pm 35.69$ $\pm 15.28$ $\pm 11.65$ $\pm 31.87$ $\pm 50.16$ $\pm 17.35$ $\pm 7.55$ 10       11       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               | $\pm 3.07$     | $\pm 2.83$     | ±1.19          | $\pm 3.36$     | ±3.61          | $\pm 3.02$     | $\pm 2.88$  |          |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19. Root fresh weight (g/pl)                                  | 2.08           | 2.17           | 2.54           | 2.28           | 2.18           | 2.10           | 2.04        | 0.67     | NS     |
| 20. Shoot fresh weight (g/pl)       115.78       122.11       123.78       108.89       106.89       103.89       103.00       51.30       NS $\pm 35.69$ $\pm 15.28$ $\pm 11.65$ $\pm 31.87$ $\pm 50.16$ $\pm 17.35$ $\pm 7.55$ 21.         21. Root dry weight (g/pl)       0.80       0.89       1.03       0.92       0.91       0.80       0.44       NS $\pm 0.21$ $\pm 0.31$ $\pm 0.12$ $\pm 0.16$ $\pm 0.53$ $\pm 0.19$ $\pm 0.36$ 22.       Shoot dry weight (g/pl)       23.91       24.51       36.61       30.87       28.18       26.96       26.17       20.62       NS $\pm 2.47$ $\pm 2.85$ $\pm 13.34$ $\pm 16.39$ $\pm 19.71$ $\pm 9.77$ $\pm 10.21$ 20.62       NS $\pm 2.47$ $\pm 2.85$ $\pm 11.53$ $\pm 19.86$ $\pm 21.28$ $\pm 3.15$ $\pm 22.55$ 24.       Pod fresh weight (g/pl)       81.48       81.77       82.00       73.33       73.00       68.33       66.33       3.21       NS $\pm 4.04$ $\pm 6.08$ $\pm 6.35$ $\pm 11.53$ $\pm 19.86$ $\pm 21.28$ $\pm 3.15$ $\pm 22.55$ 24.       Pod dry weight (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               | ±0.53          | ±0.01          | ±0.34          | ±0.28          | ±0.55          | ±0.06          | ±0.45       |          |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20. Shoot fresh weight (g/pl)                                 | 115.78         | 122.11         | 123.78         | 108.89         | 106.89         | 103.89         | 103.00      | 51.30    | NS     |
| 21. Root dry weight (g/pl)       0.80       0.89       1.03       0.92       0.91       0.80       0.44       NS $\pm 0.21$ $\pm 0.31$ $\pm 0.12$ $\pm 0.16$ $\pm 0.53$ $\pm 0.19$ $\pm 0.36$ 22.         22. Shoot dry weight (g/pl)       23.91       24.51       36.61       30.87       28.18       26.96       26.17       20.62       NS $\pm 2.47$ $\pm 2.85$ $\pm 13.34$ $\pm 16.39$ $\pm 19.71$ $\pm 9.77$ $\pm 10.21$ 20.62       NS         23. Pod fresh weight (g/pl)       81.48       81.77       82.00       73.33       73.00       68.33       66.33       3.21       NS $\pm 6.08$ $\pm 6.35$ $\pm 11.53$ $\pm 19.86$ $\pm 21.28$ $\pm 3.15$ $\pm 22.55$ $= 12.39$ $\pm 2.47$ $\pm 1.09$ $\pm 1.22$ $\pm 3.78$ $\pm 3.49$ $\pm 0.52$ $= 12.55$ $= 13.94$ $= 13.94$ $= 13.94$ $= 13.94$ $= 13.74$ $= 19.02$ $= 13.94$ $= 13.72$ $= 4.28$ NS $\pm 1.39$ $\pm 2.47$ $\pm 1.09$ $\pm 1.22$ $\pm 3.78$ $\pm 3.49$ $\pm 0.52$ $= 12.55$ $= 12.55$ $= 12.55$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               | ±35.69         | ±15.28         | ±11.65         | ±31.87         | $\pm 50.16$    | ±17.35         | ±7.55       |          |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21. Root dry weight (g/pl)                                    | 0.80           | 0.89           | 1.03           | 0.92           | 0.92           | 0.91           | 0.80        | 0.44     | NS     |
| 22. Shoot dry weight (g/pl)       23.91       24.51       36.61       30.87       28.18       26.96       26.17       20.62       NS $\pm 2.47$ $\pm 2.85$ $\pm 13.34$ $\pm 16.39$ $\pm 19.71$ $\pm 9.77$ $\pm 10.21$ 23. Pod fresh weight (g/pl)       81.48       81.77       82.00       73.33       73.00       68.33       66.33       3.21       NS $\pm 6.08$ $\pm 6.35$ $\pm 11.53$ $\pm 19.86$ $\pm 21.28$ $\pm 3.15$ $\pm 22.55$ 24. Pod dry weight (g/pl)       10.98       13.16       13.32       13.74       19.02       13.94       13.72       4.28       NS $\pm 1.39$ $\pm 2.47$ $\pm 1.09$ $\pm 1.22$ $\pm 3.78$ $\pm 3.49$ $\pm 0.52$ 25.         25. Total fresh biomass (g/pl)       199.34       207.05       208.32       184.50       182.07       174.33       171.38       66.84       NS $\pm 42.09$ $\pm 19.03$ $\pm 23.49$ $\pm 42.41$ $\pm 69.36$ $\pm 16.59$ $\pm 30.19$ 26         26       Total dry biomass (g/pl) $35.69$ $38.56$ $50.96$ $45.53$ $49.11$ $41.90$ $40.69$ 10.95       NS </td <td></td> <td>±0.21</td> <td>±0.31</td> <td>±0.12</td> <td>±0.16</td> <td>±0.53</td> <td>±0.19</td> <td>±0.36</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               | ±0.21          | ±0.31          | ±0.12          | ±0.16          | ±0.53          | ±0.19          | ±0.36       |          |        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22. Shoot dry weight (g/pl)                                   | 23.91          | 24.51          | 36.61          | 30.87          | 28.18          | 26.96          | 26.17       | 20.62    | NS     |
| 23. Pod fresh weight (g/pl)       81.48       81.77       82.00       73.33       73.00       68.33       66.33       3.21       NS         ±6.08       ±6.35       ±11.53       ±19.86       ±21.28       ±3.15       ±22.55           24. Pod dry weight (g/pl)       10.98       13.16       13.32       13.74       19.02       13.94       13.72       4.28       NS         ±1.39       ±2.47       ±1.09       ±1.22       ±3.78       ±3.49       ±0.52            25. Total fresh biomass (g/pl)       199.34       207.05       208.32       184.50       182.07       174.33       171.38       66.84       NS         ±42.09       ±19.03       ±23.49       ±42.41       ±69.36       ±16.59       ±30.19         26< Total dry biomass (g/pl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               | ±2.47          | $\pm 2.85$     | ±13.34         | ±16.39         | ±19.71         | ±9.77          | ±10.21      |          |        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23. Pod fresh weight (g/pl)                                   | 81.48          | 81.77          | 82.00          | 73.33          | 73.00          | 68.33          | 66.33       | 3.21     | NS     |
| 24. Pod dry weight (g/pl)       10.98       13.16       13.32       13.74       19.02       13.94       13.72       4.28       NS         ±1.39       ±2.47       ±1.09       ±1.22       ±3.78       ±3.49       ±0.52       10.52         25. Total fresh biomass (g/pl)       199.34       207.05       208.32       184.50       182.07       174.33       171.38       66.84       NS         ±42.09       ±19.03       ±23.49       ±42.41       ±69.36       ±16.59       ±30.19       10.85         26       Total dry biomass (g/pl)       35.69       38.56       50.96       45.53       49.11       41.80       40.69       10.85       NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               | ±6.08          | ±6.35          | ±11.53         | ±19.86         | ±21.28         | ±3.15          | ±22.55      |          |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24. Pod dry weight (g/pl)                                     | 10.98          | 13.16          | 13.32          | 13.74          | 19.02          | 13.94          | 13.72       | 4.28     | NS     |
| 25. Total fresh biomass (g/pl)       199.34       207.05       208.32       184.50       182.07       174.33       171.38       66.84       NS         ±42.09       ±19.03       ±23.49       ±42.41       ±69.36       ±16.59       ±30.19         26       Total dry biomass (g/pl)       35.69       38.56       50.96       45.53       48.11       41.80       40.69       10.95       NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               | ±1.39          | ±2.47          | ±1.09          | ±1.22          | $\pm 3.78$     | ±3.49          | $\pm 0.52$  |          |        |
| $\frac{\pm 42.09}{26} \frac{\pm 19.03}{25.69} \frac{\pm 23.49}{25.69} \frac{\pm 42.41}{25.69} \frac{\pm 69.36}{25.69} \frac{\pm 16.59}{26.79} \frac{\pm 30.19}{26.79} \frac{\pm 10.85}{26.79} \frac{\pm 10.85}{26$ | 25. Total fresh biomass (g/pl)                                | 199.34         | 207.05         | 208.32         | 184.50         | 182.07         | 174.33         | 171.38      | 66.84    | NS     |
| 26 Total dry biomass (π/pl) 35 69 38 56 50 96 45 53 48 11 41 80 40 69 19 95 NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               | ±42.09         | ±19.03         | ±23.49         | ±42.41         | ±69.36         | ±16.59         | ±30.19      |          |        |
| 20. 10. ar ar y bromass (g/pr) - 55.05 - 50.50 - 40.70 - 40.11 - 41.00 - 40.00 - 19.05 - 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26. Total dry biomass (g/pl)                                  | 35.69          | 38.56          | 50.96          | 45.53          | 48.11          | 41.80          | 40.68       | 19.85    | NS     |
| $\pm 3.26$ $\pm 2.71$ $\pm 12.91$ $\pm 15.76$ $\pm 19.99$ $\pm 9.64$ $\pm 9.89$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               | ±3.26          | $\pm 2.71$     | ±12.91         | ±15.76         | ±19.99         | ±9.64          | ±9.89       |          |        |

| Table | e.3 Effect of | UV-C | ' irradiation | seed | treatment | on | seedling | growth | (60) | DAS | ) of | ground | inut |
|-------|---------------|------|---------------|------|-----------|----|----------|--------|------|-----|------|--------|------|
|-------|---------------|------|---------------|------|-----------|----|----------|--------|------|-----|------|--------|------|

Values are mean of three replications; ± -Standard Deviation @ -One way ANOVA \*\*-Significance at 1% level NS –Non-significance

| Table.4 Effect of UV-C irradiation | seed treatment on seedling | growth (90 DAS) of groundnut |
|------------------------------------|----------------------------|------------------------------|
|------------------------------------|----------------------------|------------------------------|

|                                           | Treatments     |                |                |                |                |                |                       | CD          | F-     |
|-------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------------|-------------|--------|
| Seedling growth parameters                | T <sub>1</sub> | T <sub>2</sub> | T <sub>3</sub> | T <sub>4</sub> | T <sub>5</sub> | T <sub>6</sub> | <b>T</b> <sub>7</sub> | (P=0.05)    | value@ |
| 1. Root Length (cm/pl)                    | 13.63          | 15.27          | 16.17          | 16.33          | 16.33          | 16.87          | 17.63                 | 3.70        | NS     |
|                                           | ±3.16          | ±3.21          | ±1.01          | ±2.04          | ±2.77          | ±1.71          | ±0.55                 |             |        |
| 2. Shoot length (cm/pl)                   | 63.95          | 66.48          | 68.33          | 70.67          | 72.35          | 74.00          | 74.83                 | 12.09       | NS     |
|                                           | ±10.40         | ±1.41          | ±4.25          | ±5.35          | ±6.48          | ±9.50          | ±0.58                 |             |        |
| 3. Total length (cm/pl)                   | 77.58          | 81.75          | 83.50          | 87.00          | 88.68          | 90.87          | 92.47                 | 11.82       | NS     |
|                                           | ±8.45          | $\pm 0.50$     | ±3.54          | ±4.52          | $\pm 8.78$     | ±9.82          | ±0.03                 |             |        |
| 4. Root/shoot ratio                       | 0.22           | 0.23           | 2.24           | 0.24           | 0.23           | 0.23           | 0.24                  | 0.10        | NS     |
|                                           | ±0.08          | ±0.03          | ±0.03          | ±0.04          | ±0.04          | ±0.04          | ±0.01                 |             |        |
| 5 No of branches/pl                       | 5 17           | 5 17           | 5.17           | 6.00           | 5.83           | 5.83           | 5 67                  | 1 38        | NS     |
| c. i to of branches, pi                   | +0.76          | +0.29          | +1.53          | +0.50          | +0.29          | +0.29          | +1 53                 | 1.00        | 115    |
| 6 No of root nodules/pl                   | 74.00          | 77.50          | 83.00          | 95.10          | 89.17          | 89.17          | 88.00                 | 42 47       | NS     |
| o. no or root notures, pr                 | +6.95          | +21.34         | +10.83         | +43.34         | +10.2          | +35.16         | +10.18                |             | 145    |
| 7 Number of leaves/pl                     | £0.33          | 127.00         | 121.03         | 125 22         | 157.00         | 169.92         | 200.93                | 70.25       | NC     |
| 7. Number of leaves/pi                    | +12.26         | +42.54         | +2.05          | 135.33         | +20.00         | 100.05         | 200.85                | 19.25       | 115    |
| 8 I fl-t l-u -th ( /l fl-t)               | ±13.30         | ±42.54         | ±3.05          | ±43.57         | ±30.00         | ±80.04         | ±7.22                 | 0.63        | NC     |
| 8. Leaflet length (cm/leaflet)            | 6.43           | 6.48           | 0.52           | 6.72           | 0.57           | 6.49           | 6.25                  | 0.62        | NS     |
|                                           | ±0.17          | ±0.25          | ±0.21          | ±0.43          | ±0.31          | ±0.48          | ±0.42                 |             |        |
| 9. Leaflet breadth (cm/leaflet)           | 2.82           | 2.84           | 3.07           | 3.26           | 3.16           | 3.15           | 2.86                  | 1.07        | NS     |
|                                           | ±0.24          | $\pm 0.24$     | ±0.09          | ±0.48          | $\pm 0.14$     | $\pm 0.18$     | $\pm 0.37$            |             |        |
| 10. Leaflet Area Index                    | 12.52          | 12.70          | 13.81          | 15.08          | 14.37          | 14.13          | 12.42                 | 3.02        | NS     |
|                                           | ±1.06          | ±1.31          | ±0.74          | ±1.99          | ±1.77          | ±2.31          | ±2.36                 |             |        |
| 11. Leaf area index (cm <sup>2</sup> /pl) | 4187.00        | 6391.00        | 7287.00        | 7975.00        | 9102.00        | 9180.00        | 9947.00               | 3866.91     | NS     |
|                                           | ±736           | $\pm 2022$     | ±558           | ±1677          | $\pm 2318$     | $\pm 3603$     | ±1699                 |             |        |
| 12. Seedling vigour index                 | 4727.00        | 5000.00        | 5278.00        | 5710.00        | 6190.00        | 6556.00        | 7705.00               | 1864.69     | NS     |
|                                           | ±822           | ±1166          | ±655           | ±743           | ±356           | ±1285          | ±1541                 |             |        |
| 13. Seedling tolerance index              | 1.00           | 1.17           | 1.22           | 1.60           | 1.60           | 1.29           | 1.33                  | 0.28        | NS     |
| 0                                         | ±0.00          | ±0.33          | ±0.19          | ±0.39          | ±0.45          | ±0.38          | ±0.27                 |             |        |
| 14. No. of flowers/pl                     | 6.33           | 6.33           | 6.33           | 7.00           | 7.67           | 7.33           | 6.33                  | 5.52        | NS     |
| <b>F</b>                                  | ±1.53          | ±4.04          | ±4.93          | ±3.46          | ±2.52          | $\pm 2.08$     | ±1.15                 |             |        |
| 15. No. of pedicle without                | 44.33          | 45.33          | 50.67          | 54.33          | 89.33          | 73.67          | 70.00                 | 34.00       | NS     |
| 1                                         | +18 56         | +9.45          | +15.82         | +12.50         | +15.69         | +34.03         | +18.68                | 2           | 1.12   |
| 16 No. of mature pods/pl                  | 40.00          | 40.67          | 43.67          | 46.00          | 47.67          | 48.00          | 61.00                 | 13 50       | NS     |
| 10. No. of mature pous/pr                 | +7.00          | +0.07          | +10.60         | +6.03          | +0.20          | +9.66          | +9.54                 | 15.50       | 145    |
| 17 No. of immeture nods/nl                | 6 33           | 6.67           | 7.00           | 7.67           | 12.67          | 0.66           | 6 33                  | <b>5</b> 46 | NS     |
| 17. No. of miniature pous/pr              | 1 15           | +3.06          | +4.00          | +2.52          | 12.07          | +2 79          | +1 52                 | 3.40        | 113    |
| 10 T-4-1                                  | 16.22          | ±3.00          | ±4.00          | 12.52          | ±2.69          | 13.78          | ±1.55                 | 10.54       | 4      |
| 18. Total no. of pods/pl                  | 46.55          | 47.55          | 50.67          | 55.67          | 60.55          | 57.67          | 67.55                 | 12.74       | ^      |
|                                           | ±5.86          | ±9.07          | ±10.12         | ±7.09          | ±11.23         | ±7.02          | ±9.9                  |             |        |
| 19. Root fresh weight (g/pl)              | 2.31           | 3.01           | 3.41           | 3.29           | 3.29           | 3.57           | 4.50                  | 1.77        | NS     |
|                                           | $\pm 0.76$     | $\pm 0.68$     | ±0.29          | ±1.15          | ±1.05          | ±1.53          | ±1.00                 |             |        |
| 20. Shoot fresh weight (g/pl)             | 203.20         | 237.50         | 242.50         | 265.00         | 301.17         | 309.17         | 315.83                | 76.30       | **     |
|                                           | ±15.76         | $\pm 7.50$     | ±59.10         | ±63.09         | ±40.73         | ±16.64         | ±9.46                 |             |        |
| 21. Root dry weight (g/pl)                | 1.12           | 1.16           | 1.26           | 1.28           | 1.10           | 1.06           | 1.03                  | 0.77        | NS     |
|                                           | ±0.27          | $\pm 0.54$     | $\pm 0.17$     | ±0.35          | ±0.45          | $\pm 0.77$     | $\pm 0.02$            |             |        |
| 22. Shoot dry weight (g/pl)               | 52.60          | 54.46          | 61.11          | 61.63          | 72.25          | 75.24          | 75.95                 | 25.25       | NS     |
|                                           | ±6.73          | $\pm 4.22$     | ±9.40          | ±7.59          | ±18.19         | $\pm 27.40$    | ±12.31                |             |        |
| 23. Pod fresh weight (g/fruit)            | 126.00         | 128.33         | 134.33         | 185.33         | 175.67         | 160.34         | 156.67                | 62.61       | NS     |
|                                           | $\pm 27.22$    | ±17.56         | $\pm 26.00$    | $\pm 63.31$    | ±27.23         | ±33.66         | ±53.93                |             |        |
| 24. Pod dry weight (g/fruit)              | 70.00          | 70.67          | 73.33          | 88.67          | 80.00          | 79.67          | 75.67                 | 29.90       | NS     |
| · · · · · · · · · · · · · · · · · · ·     | ±8.89          | ±12.74         | ±4.72          | ±29.48         | $\pm 20.07$    | ±7.77          | ±23.44                |             |        |
| 25. Total fresh weight (g/nl)             | 331 51         | 368.85         | 380.24         | 451 62         | 480 12         | 473.07         | 477.00                | 92.52       | *      |
| rotar nesa weight (g/pi)                  | +20.04         | +22.36         | +84 73         | +123.91        | +52 34         | +35 51         | +47.64                |             |        |
| 26 Total day weight (g/m)                 | 123 72         | 126.30         | 135 70         | 151 57         | 153.04         | 155.07         | 152 65                | 34 52       | NC     |
| 20. 10tal dry weight (g/pl)               | 123.72         | 120.29         | 133.70         | 151.5/         | 155.28         | 155.97         | 152.05                | 34.52       | 112    |
| 27 Dur maight - £100 1                    | ±4.27          | ±14.67         | ±13.96         | ±3/.08         | ±20.19         | ±29.23         | ±12.67                | 1 - 2 -     | NG     |
| 27. Dry weight of 100 pod with            | 95.00          | 97.00          | 93.67          | 98.67          | 98.00          | 92.00          | 89.00                 | 15.37       | NS     |
|                                           | ±11.79         | ±5.57          | ±6.81          | ±4.16          | $\pm 12.12$    | ±7.94          | ±7.55                 |             |        |
| 28. Dry weight of 100 seeds               | 36.00          | 36.67          | 36.67          | 41.00          | 40.67          | 36.00          | 35.00                 | 7.58        | NS     |
|                                           | ±4.36          | $\pm 4.04$     | $\pm 2.52$     | ±5.29          | ±6.43          | $\pm 1.73$     | $\pm 5.00$            |             |        |

@-One way ANOVA; NS –Non-significance; Values are mean of three replications; \*/\*\* -Significance at 5% and 1% level, respectively

| Parameters                   | <b>Growth Period</b> |       | Treatments |       |       |       |       |       |          | Treatments CD      |  |  |  | Treatments CD |  |  |  |
|------------------------------|----------------------|-------|------------|-------|-------|-------|-------|-------|----------|--------------------|--|--|--|---------------|--|--|--|
|                              | (days)               | T1    | T2         | T3    | T4    | T5    | T6    | T7    | (P=0.05) | value <sup>@</sup> |  |  |  |               |  |  |  |
| 1. AGR – Absolute            | 30-60                | 1.25  | 1.27       | 2.20  | 1.68  | 1.55  | 1.34  | 1.30  | 0.75     | NS                 |  |  |  |               |  |  |  |
| Growth Rate (g/day)          |                      | ±0.09 | ±0.08      | ±0.66 | ±0.42 | ±0.65 | ±0.32 | ±0.34 |          |                    |  |  |  |               |  |  |  |
|                              | 60-90                | 2.82  | 2.89       | 3.16  | 3.56  | 3.64  | 3.80  | 3.73  | 1.57     | NS                 |  |  |  |               |  |  |  |
|                              |                      | ±0.22 | ±0.50      | ±0.30 | ±1.71 | ±1.10 | ±1.24 | ±0.73 |          |                    |  |  |  |               |  |  |  |
| 2. RGR – Relative            | 30-60                | 2.90  | 2.93       | 5.07  | 3.65  | 3.57  | 3.08  | 2.98  | 1.67     | NS                 |  |  |  |               |  |  |  |
| Growth Rate (g/day)          |                      | ±0.24 | ±0.21      | ±1.53 | ±0.99 | ±1.50 | ±0.73 | ±0.79 |          |                    |  |  |  |               |  |  |  |
|                              | 60-90                | 6.50  | 6.65       | 6.84  | 7.99  | 8.07  | 8.76  | 8.59  | 3.70     | NS                 |  |  |  |               |  |  |  |
|                              |                      | ±0.51 | ±1.16      | ±1.42 | ±3.98 | ±2.98 | ±2.84 | ±1.68 |          |                    |  |  |  |               |  |  |  |
| 3. NAR –Net                  | 30-60                | 2.88  | 2.91       | 5.07  | 3.65  | 3.56  | 3.08  | 2.98  | 1.70     | NS                 |  |  |  |               |  |  |  |
| Rate (g/m <sup>2</sup> /day) |                      | ±0.21 | ±0.19      | ±1.53 | ±0.99 | ±1.51 | ±0.72 | ±0.79 |          |                    |  |  |  |               |  |  |  |
|                              | 60-90                | 6.50  | 6.65       | 6.83  | 8.19  | 8.24  | 8.76  | 8.59  | 3.65     | NS                 |  |  |  |               |  |  |  |
|                              |                      | ±0.51 | ±1.16      | ±1.41 | ±3.94 | ±2.99 | ±2.84 | ±1.68 |          |                    |  |  |  |               |  |  |  |

# **Table.5** Effect of UV-C irradiation seed treatment on AGR, RGR and NAR of groundnut seedlings

@ -One way ANOVA; NS –Non-significance; Values are mean of three replications;

**Table.6** Effect of UV-C irradiation seed treatment on biomass production and pod yield (90DAS) of groundnut seedlings

| Turneturent          | Productivity (kg/hectare) |                 |  |  |  |  |  |  |  |
|----------------------|---------------------------|-----------------|--|--|--|--|--|--|--|
| Treatment            | Vegetative Biomass        | Pod yield       |  |  |  |  |  |  |  |
| T1                   | 8236 ±1383                | $2143 \pm 1060$ |  |  |  |  |  |  |  |
| T2                   | 9330 ±1710                | $2150 \pm 0926$ |  |  |  |  |  |  |  |
| Т3                   | $9640 \pm 3707$           | $2177 \pm 1671$ |  |  |  |  |  |  |  |
| T4                   | $9727 \pm 3781$           | $2533 \pm 1837$ |  |  |  |  |  |  |  |
| Т5                   | $12493 \pm 1470$          | $2623 \pm 1603$ |  |  |  |  |  |  |  |
| Т6                   | $13140 \pm 4829$          | $2720 \pm 2572$ |  |  |  |  |  |  |  |
| Т7                   | $15483 \pm 0707$          | 3393 ±3403      |  |  |  |  |  |  |  |
| CD (P=0.05)          | 4089.55                   | 1615.21         |  |  |  |  |  |  |  |
| F-value <sup>@</sup> | *                         | NS              |  |  |  |  |  |  |  |





#### Int.J.Curr.Microbiol.App.Sci (2015) 4(8): 430-443









#### Int.J.Curr.Microbiol.App.Sci (2015) 4(8): 430-443







T6

T6

**T**7

**T**7





439





In general, UV-C irradiation seed treatment progressively increased the fresh vegetative biomass production and pod yield at all treatments as compared to control (Table 6). Maximum increase of fresh vegetative biomass (15483kg/hectare) and pod yield (3393kg/hectare) was recorded in 60min exposed seeds to UV-C irradiation.

The seedling vigour index of groundnut was

more in UV-C irradiated water soaked seeds as compared to dry groundnut seeds (Fig. 25). UV-C irradiation generally promoted the SVI of groundnut at all sampling days as compared to controls (Table 2 to 4; Fig. 25). The tolerance index of groundnut seedlings towards the UV-C treatment was increased at all sampling days than dry and soaked seed controls (Table 2 & 4; Fig. 26).

The seedling growth rates -absolute growth rate (AGR), relative growth rate (RGR) and net assimilation rate (NAR) of groundnut were estimated and the UV-C treatment showed initial increase of AGR, RGR and NAR followed by a reduction between 30-60 days period of growth (Table 5; Fig. 27) as compared to controls. On the other hand, between 60-90 days, UV-C irradiation seed treatment showed promotery effect on AGR, RGR and NAR as compared to controls.

Many reports indicate that UV rays results damage in plants and produced alterations in growth, development and morphology (Strid et al., 1997; Flint et al., 2003; Rathore et al., 2003) while Ambaru Purna Sudha Bindhu and Kakoli Das Sharma (2004) reported an increase in the seed germination in UV-A irradiated Capsicum annum, Linn and Anum Siddiqui et al. (2011) reported that groundnut seedlings showed increment in shoot weight, root length and root weight, leaf area and number of nodules when seeds of groundnut were treated with UV-C for 10, 15, 30 and 60min period as observes in the present study which shows an increase in seed germination, seedling growth and productivity of groundnut with increasing exposure period up to 60min of UV-C irradiation on water soaked seeds as compared to control. Many researchers observed that pre-sowing treatment of seeds with UV was effectively used to increase crop productivity (Jdanova, 1962; Dubrov, 1977; Ghallab and Omar, 1998; Shiozaki et al., 1999).

Thus, UV-C irradiated water soaked groundnut seeds, generally, showed an increase of seed germination and all seedling growth parameters with increasing period of UV-C exposure up to 60min as compared to dry and soaked seed controls at all sampling days (30, 60 and 90<sup>th</sup> days).

#### Acknowledgement

The authors express sincere thanks to the Management Authorities, Principal. S.T. Hindu College, and HOD, Department of Botany & Research Centre, S. T. Hindu College, Nagercoil, Kanyakumari District, Tamil Nadu, India for providing necessary facilities and encouragement.

# References

- Abdul-Baki, A.S., Anderson, J.O. 1973. Vigour determination in soybean seed by multiple criteria. *Crop Sci.*, 13: 630–633.
- Ambaru Purna Sudha Bindhu, M.S., Kakoli Das Sharma, 2004. Effect of ultraviolet radiation on *Capsium annum*, Linn. mutation research, *Agrobios. News Lett.*, 2(9): 23–24.
- Anum Siddiqui, Shahnaz Dawae, Javed Zaki, M., Neelofar Hamid, 2011. Role of ultraviolet (UV-C) radiation in the control of root infecting fungi on groundnut and mung bean. *Pak. J. Bot.*, 43(4): 2221–2224.
- Arvind Kumar, Purohit, S.S. 1998. Plant physiology: fundamentals and applications, Vol. 668. Agrobios (India), Agro House. Pp. 670–671.
- Barnes, P.W., Flint, S.D., Caldwell, M.M. 1990. Morphological responses of crop and weed species of different growth forms to Ultraviolet-B radiation. *Am. J. Bot.*, 77: 1354–1360.

- Bjorn, L.O. 1996. Effects of ozone depletion and increased UV-B on terrestrial ecosystems. *Int. J. Environ.*, 23: 555– 561.
- Briggs, G.E., Kidd, F., West, 1920. Quantitative analysis of growth. *Ann. Appl. Biol.*, 7: 103–202.
- Caldwell, M.M., Bjorn, L.O., Bornman, J.F., Flint, S.D., Kulandaivelu, G., Teramura, A.H., Tevini, M. 1998. Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J. Photochem. Photobiol., 46: 40–52.
- Caldwell, M.M., Flint, S.D. 1994. Stratospheric ozone reduction, solar UV-B radiation and terrestrial ecosystems. *Climatic Change*, 28: 375–394.
- Conger, B.V., Nilan, R.A., Konzak, C.E. 1968. Post irradiation oxygen sensitivity of barley seeds varying slightly in water content. *Radiat. Bot.*, 8: 31–36.
- Corlett, J.E., Stephen, J., Jones, H.F., Woodfin, R., Mepsted, R., Paul, N.D. 1997. Assessing the impact of UV-B radiation on the growth and yield of field crops. In: Lumsden, P. (Ed.), Plants and UV-B responses to environmental change. Cambridge University Press, Cambridge. Pp. 195–211.
- Correia, C.M., Areal, E.L.V., Torres-Pereira, M.S., Torres-Pereira, J.M.G. 1998. Intraspecific variation in sensitivity to Ultraviolet-B radiation in maize grown under filed conditions. I. Growth and Morphological aspects. *Field Crops Res.*, 59: 81–89.
- Correia, C.M., Areal, E.L.V., Torres-Pereira, M.S., Torres-Pereira, J.M.G. 1999. Intraspecific variation is sensitivity of Ultraviolet-B radiation in maize grown under field conditions. II. physiological and biochemical aspects. *Field Crops Res.*, 62: 97–105.

- Day, T.A. 1993. Relating UV-B radiation screening effectiveness of foliage to absorbing composed concentration and anatomical characteristics in a diverse group of plants. *Oecologia*, 95: 542–550.
- Dubrov, A.P. 1977. Physiological and biophysical study of ultraviolet irradiation influence on plants on early stages of development. Ph.D. Thesis. Leningrad.
- Ehrenberg, A. 1961. Research on free radicals in enzyme chemistry and irradiation biology. In: Free radicals in biological system. Academic Press, New York. Pp. 337–350.
- Flint, S.D., Ryel, R.J., Caldwell, M.M. 2003. Ecosystem UV-B experiments in terrestrial communities: a review of recent findings and methodologies. *Agr. Forest Meteoral.*, 120: 177–189.
- Ghallab, A.M., Omar, M.M. 1998. Wheat productivity as affected by seed irradiation with laser rays. *Ann. Agricult. Sci. Moshtohor*, 36(1): 261– 274.
- Greenberg, B.M., Wilson, M.I., Huang, X.D., Duxbury, C.L., Gerhaddt, K.E., Gensemer, R.W. 1997. The effects of ultraviolet-B radiation on higher plants. In: Wang, W., Goursuch, J., Hughes, J.S. (Eds.) Plants for environmental studies. CRS Press, Boca Ration, FI. Pp. 1–35.
- Gregory, F.C. 1926. The effect of climatic condition on the growth of barley. *Ann. Bot.*, 40(1): 26–28.
- Jdanova, E.B. 1962. About ultraviolet irradiation influence on germination and growth of rye. Kagan VE, Fabisiak Japan. *Proc. Agricult. Acad.*, 77: 451–455.
- Kalra, G.S., Dhiman, S.D. 1977. Determination of Leaf Area of Wheat plants by a rapid method. *J. Indian Bot. Sci.*, 56: 261–264.

- Mc Leod, A.R., Newsham, K.K. 1997. Impacts of elevated UV-B on forest ecosystem. In: Lumsden, P. (Ed.), Plants and UV-B responses to environmental change. Cambridge University Press, Cambridge. Pp. 247–281.
- Rathore, D., Agarwal, S.B., Singh, A. 2003.
  Influence of supplemental UV-B radiation and mineral nutrients on biomass, pigments and yield of two cultivars of wheat *Triticum aestivum* L. *Int. J. Biotronics*, 32: 1–15.
- Redford, 1967. Physiological analysis of growth and yield of pigeon pea (*Cajanus cajan* (L) Millsp). *Ad. Plant Sci.*, 21(II): 553–556.
- Rozema J.V., Bjorn, L.O., Caldwell, M.M. 1977. UV-B as an environmental factor in plant life: stress and regulation. *Trends Ecol. Evolut.*, 12: 22–28.
- Shiozaki, N., Hattori, I., Tezuka, T. 1999. Activation of growth nodulation in a symbiotic system between pea plants and leguminous bacteria by near UV radiations. J. Phytochem. Photobiol. B: Biol., 50: 33–37.
- Strid, A., Chow, W.S., Anderson, J.M. 1997. UV-B damage and protection at the molecular level in plant. *Photosynth. Res.*, 39: 475–489.
- Turner, R.C., Marshal, 1972. Accumulation of zinc by sub cellular fraction of root growth Agrostis tenuis in relation of zinc tolerance. New Phytol., 71: 671– 676.
- Ziska, L.H., Termura, A.H., Sullivan, J. 1992. Physiological sensitivity of plants along on elevations gradient to UV-B radiation. *Am. J. Bot.*, 79: 863– 871.